FMI NFA 2019-2020 - Homework 2

Ianis Vasilev, ianis@ivasilev.net

June 19, 2020

Exercise. ([Dei85, exercise 7.3]) Consider the subsets $B_{2} \subseteq B_{3} \subseteq B_{1} \subseteq C([0,1])$, defined by

$$
\begin{array}{r}
B_{1}:=\left\{x \in C([0,1]): \begin{array}{r}
0 \leq t \leq 1 \Longrightarrow 0 \leq x(t) \leq 1 \\
x(0)=0, x(1)=1
\end{array}\right\} \\
B_{2}:=\left\{\begin{array}{r}
0 \leq t \leq \frac{1}{2} \Longrightarrow 0 \leq x(t) \leq \frac{1}{2} \\
\left.x \in B_{1}: \begin{array}{r}
2 \\
\frac{1}{2} \leq t \leq 1 \Longrightarrow
\end{array}\right\} \\
B_{3}:=\left\{\begin{array}{r}
\frac{1}{2} \leq x(t) \leq 1
\end{array}\right\} \\
\left.x \in B_{1}: \begin{array}{r}
0 \leq t \leq \frac{1}{2} \Longrightarrow x(t) \leq \frac{2}{3} \\
\frac{1}{2} \leq t \leq 1 \Longrightarrow
\end{array}\right\}
\end{array} \begin{array}{r}
0 \leq x(t) \leq 1
\end{array}\right\}
\end{array}
$$

Then $\alpha\left(B_{1}\right)=1, \alpha\left(B_{2}\right)=\frac{1}{2}, \alpha\left(B_{3}\right)=\frac{2}{3}$ and $\beta\left(B_{1}\right)=\beta\left(B_{2}\right)=\beta\left(B_{3}\right)=\frac{1}{2}$.
Proof. Since the distance between any two functions from B_{1} is at most 1 , we have that $\operatorname{diam} B_{1}=1$ and $\alpha\left(B_{1}\right) \leq 1$.

Fix $\varepsilon>0$. For any function $f \in B_{1}$, continuity of f gives us a radius $\delta_{f}>0$ such that

$$
x<2 \delta_{f} \Longrightarrow f(x)<\varepsilon
$$

Define

$$
T_{\varepsilon}(f)(x):= \begin{cases}\frac{x}{\delta} f, & 0 \leq x<\delta_{f} \\ f\left(\delta_{f}\right)+\left[1-f\left(\delta_{f}\right)\right]\left(2-\frac{x}{\delta_{f}}\right), & \delta_{f} \leq x<2 \delta_{f} \\ f(x), & x \geq 2 \delta_{f},\end{cases}
$$

so that

$$
\left\|T_{\varepsilon}(f)-f\right\| \geq T_{\varepsilon}(f)\left(\delta_{f}\right)-f\left(\delta_{f}\right)=1-f\left(\delta_{f}\right)>1-\varepsilon
$$

Additionally, because $\delta_{T_{\varepsilon}(f)}<\delta_{f}$, we have that $f\left(\delta_{T_{\varepsilon}(f)}\right)<\varepsilon$ and

$$
\left\|T_{\varepsilon}\left(T_{\varepsilon}(f)\right)-f\right\| \geq T_{\varepsilon}\left(T_{\varepsilon}(f)\right)\left(\delta_{T_{\varepsilon}(f)}\right)-f\left(\delta_{T_{\varepsilon}(f)}\right)=1-f\left(\delta_{T_{\varepsilon}(f)}\right)>1-\varepsilon .
$$

Thus, proceeding by induction, we see that for any $m=1,2, \ldots$

$$
\left\|T_{\varepsilon}^{m}(f)-f\right\|>1-\varepsilon,
$$

where T_{ε}^{m} denotes repeated application of T_{ε}.
Consider the sequence

$$
\left\{T_{\varepsilon}^{k}(f)\right\}_{k=0}^{\infty}=\left\{f, T_{\varepsilon}(f), T_{\varepsilon}\left(T_{\varepsilon}(f)\right), \ldots\right\}
$$

We can easily see that the distance between any two elements of the sequence, say $T_{\varepsilon}^{k}(f)$ and $T_{\varepsilon}^{k+m}(f)$, is strictly greater that $1-\varepsilon$, i.e.

$$
\left\|T_{\varepsilon}^{k}(f)-T_{\varepsilon}^{k+m}(f)\right\|=\left\|T_{\varepsilon}^{k}(f)-T_{\varepsilon}^{m}\left(T_{\varepsilon}^{k}(f)\right)\right\|>1-\varepsilon .
$$

Hence B_{1} cannot be covered by a finite family of sets with diameter $1-\varepsilon$ and $\alpha\left(B_{1}\right) \geq$ $1-\varepsilon$. Since $\varepsilon>0$ can be made arbitrarily small, this implies that $\alpha\left(B_{1}\right) \geq 1$ and, because we already have the reverse inequality, $\alpha\left(B_{1}\right)=1$.

In the set B_{2}, the maximum distance between two functions is $\frac{1}{2}$, thus $\operatorname{diam}\left(B_{2}\right)=\frac{1}{2}$ and $\alpha\left(B_{2}\right) \leq \frac{1}{2}$. We can then define an operator similar to T_{ε} that creates "spikes" of height $\frac{1}{2}$ to prove the reverse inequality, obtaining

$$
\alpha\left(B_{2}\right)=\frac{1}{2} .
$$

Finally, the set B_{3} has diameter $\frac{2}{3}$ and hence $\alpha\left(B_{3}\right)=\frac{2}{3}$.
The ball measure for B_{1} satisfies the inequalities

$$
\begin{equation*}
\frac{1}{2}=\frac{\alpha\left(B_{1}\right)}{2} \leq \beta\left(B_{1}\right) \leq \alpha\left(B_{1}\right)=1 \tag{1}
\end{equation*}
$$

Additionally, B_{1} is strictly contained in the ball centered in the constant function $\frac{1}{2}$ with radius $\frac{1}{2}$, which implies that $\beta\left(B_{1}\right) \leq \frac{1}{2}$. Combining this with 11 , we obtain $\beta\left(B_{1}\right)=\frac{1}{2}$.

For B_{2} we have

$$
\begin{equation*}
\frac{1}{4}=\frac{\alpha\left(B_{1}\right)}{2} \leq \beta\left(B_{2}\right) \leq \alpha\left(B_{2}\right)=\frac{1}{2} \tag{2}
\end{equation*}
$$

Assume that for some $\varepsilon>0$ the set B_{2} can be covered by a finite set of balls with centers $\left\{f_{1}, \ldots, f_{n}\right\} \subsetneq C([0,1])$ and radius $\frac{1}{2}-\varepsilon$.

Because of continuity, we can find a radius $\delta>0$ such that for all $f_{k}, k=1, \ldots, n$ we have

$$
x \in\left[\frac{1-\delta}{2}, \frac{1+\delta}{2}\right] \Longrightarrow\left|f_{k}(x)-f_{k}\left(\frac{1}{2}\right)\right|<\varepsilon
$$

Consider the function

$$
g(x):= \begin{cases}0, & 0 \leq x<\frac{1-\delta}{2} \\ \frac{2 x+\delta-1}{2 \delta}, & \frac{1-\delta}{2} \leq x \leq \frac{1+\delta}{2} \\ 1, & \frac{1+\delta}{2}<x \leq 1\end{cases}
$$

If $f_{k}\left(\frac{1}{2}\right) \geq \frac{1}{2}$, then $f_{k}\left(\frac{1-\delta}{2}\right)>\frac{1}{2}-\varepsilon$ and

$$
\left\|f_{k}-g\right\| \geq f_{k}\left(\frac{1-\delta}{2}\right)-g\left(\frac{1-\delta}{2}\right)=f_{k}\left(\frac{1-\delta}{2}\right)>\frac{1}{2}-\varepsilon
$$

Analogously, if $f_{k}\left(\frac{1}{2}\right)<\frac{1}{2}$, then $f_{k}\left(\frac{1+\delta}{2}\right)<\frac{1}{2}+\varepsilon$ and

$$
\left\|g-f_{k}\right\| \geq g\left(\frac{1+\delta}{2}\right)-f_{k}\left(\frac{1+\delta}{2}\right)=1-f_{k}\left(\frac{1+\delta}{2}\right)>\frac{1}{2}-\varepsilon
$$

Thus, for every $k=1, \ldots, n$ we have

$$
\left\|g-f_{k}\right\|>\frac{1}{2}-\varepsilon
$$

i.e. g in not contained in a ball of radius $\frac{1}{2}-\varepsilon$ around any of the centers f_{1}, \ldots, f_{n}.

Hence $\beta\left(B_{2}\right) \geq \frac{1}{2}$ and, because we already have the reverse inequality from (2), this implies $\beta\left(B_{2}\right)=\frac{1}{2}$. Because of the inclusion $B_{2} \subsetneq B_{3} \subsetneq B_{1}$, we have

$$
\frac{1}{2}=\beta\left(B_{2}\right) \leq \beta\left(B_{3}\right) \leq \beta\left(B_{1}\right)=\frac{1}{2}
$$

hence $\beta\left(B_{3}\right)=\frac{1}{2}$.

References

[Dei85] Klaus Deimling. Nonlinear functional analysis. Springer-Verlag, 1985. ISBN: 0387139281.

