FMI NFA 2019-2020 - Homework 1

Ianis Vasilev, ianis@ivasilev.net

April 30, 2020

Exercise. ([Dei85, exercise 5.1]) Let $f \in C\left(\mathbb{R}^{n}\right)$ be such that f maps $\partial B(0, r)$ onto itself, for some $r>0$. Then

$$
d\left(f^{m}, B(0, r), 0\right)=[d(f, B(0, r), 0)]^{m}
$$

Proof. We have $f(\partial B(0, r))=\partial B(0, r)$, hence the set

$$
\mathbb{R}^{n} \backslash f(\partial B(0, r))=\mathbb{R}^{n} \backslash \partial B(0, r)
$$

has only one bounded connected component, $B(0, r)$.
Inductively, by the product formula ([Dei85, theorem 5.1]),

$$
\begin{aligned}
d\left(f^{m}, B(0, r), 0\right) & =d\left(f^{m-1} \circ f, B(0, r), 0\right)= \\
& =d(f, B(0, r), B(0, r)) d\left(f^{m-1}, B(0, r), 0\right)= \\
& =\ldots= \\
& =[d(f, B(0, r), B(0, r))]^{m}= \\
& \stackrel{(d 5)}{=}[d(f, B(0, r), 0)]^{m} .
\end{aligned}
$$

Exercise. (Dei85, exercise 5.2]) If $\Omega \subseteq \mathbb{R}^{n}$ is open bounded and $f \in C(\bar{\Omega})$ is one-to-one, then $d(f, \Omega, y) \in\{-1,1\}$ for every $y \in f(\Omega)$.

Proof. Fix $y_{0} \in f(\Omega)$ and $x_{0}=f^{-1}\left(y_{0}\right)$. Let $\left\{K_{i}\right\}_{i \in I}$ be the bounded connected components of $\mathbb{R}^{n} \backslash f(\partial \Omega)$. Denote by K_{j} the component that contains $\tilde{\sim}_{0}$.

By Dei85, proposition 1.1], there exist continuous extensions \widetilde{f} of f and $\widetilde{f^{-1}}$ of f^{-1} to \mathbb{R}^{n}

By Dei85, theorem 3.1(d6)], since id $=f^{-1} \circ f$ and $\widetilde{f^{-1}} \circ \tilde{f}$ coincide on the boundary of Ω, we have

$$
d\left(f^{-1} \circ f, \Omega, x_{0}\right)=d\left(\widetilde{f^{-1}} \circ \widetilde{f}, \Omega, x_{0}\right)
$$

Now the product formula ([Dei85, theorem 5.1]) implies that

$$
\begin{align*}
1 & \stackrel{d 1}{=} d\left(\mathrm{id}, \Omega, x_{0}\right)= \\
& =d\left(f^{-1} \circ f, \Omega, x_{0}\right)= \\
& =d\left(\widetilde{f^{-1}} \circ \widetilde{f}, \Omega, x_{0}\right)= \\
& =\sum_{i \in I} d\left(\widetilde{f}, \Omega, K_{i}\right) d\left(\widetilde{f^{-1}}, K_{i}, x_{0}\right) . \tag{1}
\end{align*}
$$

We will now show that there is only one nonzero term, namely $i=j$. Fix $i \neq j$. We first show that $\partial K_{i} \subseteq f(\partial \Omega)$. Since f is a homeomorphism, we have

$$
\begin{equation*}
f(\partial \Omega)=\partial f(\Omega) . \tag{2}
\end{equation*}
$$

By definition of K_{i}, we have

$$
\begin{equation*}
K_{i} \cup\left(\bigcup_{\substack{m \in I \\ m \neq i}} K_{m}\right) \cup K_{\infty}=\left(\bigcup_{m \in I} K_{m}\right) \cup K_{\infty}=\mathbb{R}^{n} \backslash f(\partial \Omega) \stackrel{\text { 国 }}{\mathbb{R}^{n} \backslash \partial f(\Omega) ~} \tag{3}
\end{equation*}
$$

Taking the boundaries of both sides, we obtain

$$
\begin{equation*}
\partial\left(K_{i} \cup\left(\bigcup_{\substack{m \in I \\ m \neq i}} K_{m}\right) \cup K_{\infty}\right)=\partial\left(\mathbb{R}^{n} \backslash \partial f(\Omega)\right) . \tag{4}
\end{equation*}
$$

For the left side in (4), note that when A and B are disjoint open sets, we have $\partial(A \cup B)=\partial A \cup \partial B$. For the right side, note that the boundary of a set coincides with the boundary of its complement. Thus

$$
\partial K_{i} \cup \partial\left(\bigcup_{\substack{m \in I \\ m \neq i}} K_{m}\right) \cup \partial K_{\infty}=\partial(\partial f(\Omega))=\partial f(\Omega) \stackrel{\text { 回 }}{=} f(\partial \Omega),
$$

which implies that

$$
\begin{equation*}
\partial K_{i} \subseteq f(\partial \Omega) . \tag{5}
\end{equation*}
$$

In particular, $\partial K_{i} \subseteq f(\bar{\Omega})$, so $\widetilde{f^{-1}}$ and f^{-1} coincide on ∂K_{i}.
We can represent its closure as the disjoint union

$$
\begin{aligned}
\bar{K}_{i} & =\partial K_{i} \cup K_{i}= \\
& =\partial K_{i} \cup\left[K_{i} \backslash f(\bar{\Omega})\right] \cup\left[K_{i} \cap f(\bar{\Omega})\right]= \\
& =\partial K_{i} \cup\left[K_{i} \backslash f(\bar{\Omega})\right] \cup\left[K_{i} \cap f(\Omega \cup \partial \Omega)\right]= \\
& =\partial K_{i} \cup\left[K_{i} \backslash f(\bar{\Omega})\right] \cup\left[K_{i} \cap f(\Omega)\right] \cup\left[K_{i} \cap f(\partial \Omega)\right] .
\end{aligned}
$$

By (5) we have that

$$
\partial K_{i} \cup\left[K_{i} \cap f(\partial \Omega)\right] \subseteq f(\partial \Omega) .
$$

Because f is a homeomorphism and both Ω and K_{i} are open, $K_{i} \cap f(\Omega)$ and $K_{i} \backslash f(\bar{\Omega})$ are both open subsets of K_{i}. Since $x_{0} \notin f(\partial \Omega)$, Dei85, theorem 3.1(d2)] implies that

$$
d\left(\widetilde{f^{-1}}, K_{i}, x_{0}\right)=d\left(\widetilde{f^{-1}}, K_{i} \backslash f(\bar{\Omega}), x_{0}\right)+d\left(\widetilde{f^{-1}}, K_{i} \cap f(\Omega), x_{0}\right) .
$$

The second term is zero because $y_{0} \notin K_{i} \cap f(\Omega)$, i.e.

$$
d\left(\widetilde{f^{-1}}, K_{i} \cap f(\Omega), x_{0}\right) \stackrel{(d 6)}{=} d\left(f^{-1}, K_{i} \cap f(\Omega), x_{0}\right) \stackrel{(d 4)}{=} 0 .
$$

Hence, for $i \neq j$, we have

$$
d\left(\widetilde{f^{-1}}, K_{i}, x_{0}\right)=d\left(\widetilde{f^{-1}}, K_{i} \backslash f(\bar{\Omega}), x_{0}\right) .
$$

If we assume that

$$
d\left(\widetilde{f^{-1}}, K_{i} \backslash f(\bar{\Omega}), x_{0}\right) \neq 0,
$$

by Dei85, theorem 3.1(d4)] there should exist $y \in K_{i} \backslash f(\bar{\Omega})$ such that $\widetilde{f^{-1}}(y)=x_{0}$. Thus

$$
\begin{equation*}
d\left(\widetilde{f}, \Omega, K_{i}\right) \stackrel{d 5}{=} d(\widetilde{f}, \Omega, y) \stackrel{d 4}{=} 0, \tag{6}
\end{equation*}
$$

since $y \notin \widetilde{f}(\bar{\Omega})=f(\bar{\Omega})$.
Hence for all $i \neq j$, either

$$
d\left(\widetilde{f}, \Omega, K_{i}\right)=0 \quad \text { or } \quad d\left(\widetilde{f^{-1}}, K_{i}, x_{0}\right)=0,
$$

so the sum in (1) reduces to

$$
\begin{equation*}
1=\sum_{i \in I} d\left(\widetilde{f}, \Omega, K_{i}\right) d\left(\widetilde{f^{-1}}, K_{i}, x_{0}\right)=d\left(\widetilde{f}, \Omega, K_{j}\right) d\left(\widetilde{f^{-1}}, K_{j}, x_{0}\right) . \tag{7}
\end{equation*}
$$

Since $y_{0} \in K_{j}$,

$$
\begin{equation*}
d\left(\widetilde{f}, \Omega, K_{j}\right) \stackrel{d 5}{=} d\left(\widetilde{f}, \Omega, y_{0}\right) \stackrel{d 6}{=} d\left(f, \Omega, y_{0}\right) . \tag{8}
\end{equation*}
$$

From (7) and (8) it follows that

$$
d\left(f, \Omega, y_{0}\right)=d\left(\widetilde{f}, \Omega, K_{j}\right)=\frac{1}{d\left(\widetilde{f^{-1}}, K_{j}, x_{0}\right)} .
$$

However, the topological degree d can only be an integer, hence

$$
d\left(f, \Omega, y_{0}\right)=d\left(\widetilde{f^{-1}}, K_{j}, x_{0}\right) \in\{-1,1\} .
$$

References

[Dei85] Klaus Deimling. Nonlinear functional analysis. Springer-Verlag, 1985. ISBN: 0387139281.

