FMI CDBS 2019-2020 - Homework 2

Ianis Vasilev, ianis@ivasilev.net

July 5, 2020

Let E be a real Banach space.

Definition 1. ([Phe93, Example 2.26]) We define the duality mapping

$$D: E \rightrightarrows E^*, D(x) \coloneqq \{x^* \in E^* \colon ||x|| = ||x^*|| \text{ and } \langle x^*, x \rangle = ||x^*|| ||x|| \}.$$

Note. We will only use this mapping for unit vectors, so we may as well consider its restriction to the unit spheres, where

$$D': S_E \rightrightarrows S_{E^*},$$
$$D'(x) \coloneqq \{x^* \in S_{E^*}: \langle x^*, x \rangle = 1\}.$$

Definition 2. ([Phe93, Definition 2.36]) The norm $\|\cdot\|$ on E is said to be

a) Strictly convex (or rotund) if there is no line segments in the unit sphere S_E .

b) Smooth if for each $x \in S_E$ the duality mapping is single-valued.

I decided to prove the following since it was not obvious to me

Lemma 3. For every point $x \in E$, the set D(x) is nonempty.

Proof. Fix $x \in E$ and consider the one-dimensional subspace

$$\operatorname{span}\{x\} = \{\lambda x \colon \lambda \in \mathbb{R}\}.$$

Define ξ : span $\{x\} \to \mathbb{R}$ by $\xi(\lambda x) = \lambda ||x||^2$.

The functional ξ is linear and, since it acts on a finite-dimensional space, it is also continuous. The norm of ξ is

$$\|\xi\| = \max\left\{\left\langle\xi, \frac{x}{\|x\|}\right\rangle, \left\langle\xi, -\frac{x}{\|x\|}\right\rangle\right\} = \max\{\|x\|, -\|x\|\} = \|x\|.$$

The Hahn-Banach theorem allows us to extend ξ to a continuous linear functional $x^* \in E^*$ such that $||x^*|| = ||\xi|| = ||x||$ and $\langle x^*, x \rangle = \langle \xi, x \rangle = ||x||^2 = ||x|| ||x^*||$. Thus $x^* \in D(x)$ and D(x) is nonempty.

Exercise 1. ([Phe93, Exercise 2.37]) Prove that:

- a) If the norm in E is such that its dual norm in E^* is rotund (resp. smooth), then it is itself smooth (resp. rotund).
- b) The norm in E is rotund iff every convex subset of E has at most one point of least norm.
- c) Norms in Hilbert spaces are both smooth and rotund, but the norms in c_0 and l^1 are neither.
- d) The norm in E is strictly convex iff ||x + y|| < ||x|| + ||y|| whenever x and y are linearly independent.
- *Proof.* 1. 1) First, let the dual norm $\|\cdot\|^*$ be rotund and assume that $\|\cdot\|$ is not smooth.

Fix $x \in S_E$. Since D(x) is nonempty (by lemma 3) and since $\|\cdot\|$ is not smooth, then there exist two different functionals $x^*, y^* \in D(x)$, such that

$$\langle x^*, x \rangle = \langle y^*, x \rangle = 1.$$

We will show that the segment $[x^*, y^*]$ is contained in S_{E^*} , i.e. that the dual norm is not rotund.

Fix any $t \in (0, 1)$ and define $z^* := tx^* + (1 - t)y^*$. We only need to show that $||z^*|| = 1$.

By the triangle inequality, we have

$$||z^*|| = ||tx^* + (1-t)y^*|| \le t ||x^*|| + (1-t) ||y^*|| = t + (1-t) = 1.$$

For the reverse inequality, note that

$$||z^*|| \ge \langle z^*, x \rangle = t \langle x^*, x \rangle + (1-t) \langle y^*, x \rangle = t + (1-t) = 1,$$

thus $||z^*|| = 1$. Hence $[x^*, y^*]$ is contained in S_{E^*} and the dual space is not smooth. The obtained contradiction proves that the norm in E is rotund.

2) Now let the dual norm $\|\cdot\|^*$ be smooth and assume that $\|\cdot\|$ is not rotund. Then there exist points $x, y \in S_E$ such that the while segment [x, y] is contained in S_E .

Fix $t \in (0,1)$ and define $z \coloneqq tx + (1-t)y \in S_X$. Denote by $J : E \to E^{**}$ the canonical embedding into the double-dual. By lemma 3, there exists a functional $z^* \in E^*$, such that

$$\langle J(z), z^* \rangle = \langle z^*, z \rangle = 1.$$

Because the dual norm $\|\cdot\|^*$ is smooth, we cannot have $\langle J(x), z^* \rangle = \langle z^*, x \rangle = 1$ or $\langle J(y), z^* \rangle = \langle z^*, y \rangle = 1$ and since $\|z^*\| = 1$, necessarily

$$\langle z^*, x \rangle < 1$$
 and $\langle z^*, y \rangle < 1$.

If follows that

$$1 = \langle z^*, z \rangle = t \, \langle z^*, x \rangle + (1 - t) \, \langle z^*, y \rangle < t + (1 - t) = 1,$$

which is a contradiction. Hence $\|\cdot\|$ is rotund.

2. (\implies) Let the norm in *E* be rotund and let $C \subseteq E$ be a (potentially empty) convex set. We will prove that *C* contains at most one point of least norm.

If C is empty or otherwise contains no element of least norm, trivially contains at most one point of least norm.

Now let C contain at least one element $x \in C$ of least norm. Assume that $y \in C$ is another element of least norm. Necessarily ||x|| = ||y||.

Fix $t \in (0, 1)$ and define z := tx + (1 - t)y. Since C is convex, it contains z. Since x and y are elements of least norm, we have $||z|| \ge ||x||$. By the triangle inequality,

$$||z|| = ||tx + (1-t)y|| \le t ||x|| + (1-t) ||y|| = ||x||,$$

thus ||z|| = ||x||.

This implies that the entire segment [x, y] are elements of least norm in C. Hence the segment [x, y] is contained in the sphere $||x|| S_E$, which contradicts the rotundity of the norm $|| \cdot ||$.

Hence C contains at most one element of least norm.

(\Leftarrow) Let every convex set $C \subseteq E$ have at most one element of least norm.

Assume that the norm $\|\cdot\|$ is not rotund. Then the unit sphere S_E contains a line segment $[x, y], x \neq y$. The set [x, y] is compact and, by the Weierstrass extreme value theorem, the norm attains its minimum on the segment in a point $z \in [x, y]$. Since the segment is also convex and we assumed that convex sets have at most one element of least norm, it follows that this element z is unique.

Then for any point $s \in [x, y], s \neq z$, we have ||s|| > ||z|| = 1, thus s cannot be an element of the unit sphere. The obtained contradiction shows that the norm $|| \cdot ||$ is rotund.

3. 1) Let E be a Hilbert space, i.e. the norm is generated by an inner product and, due to Riesz's theorem, we identify the space E with its continuous dual E^* . To prove that E is rotund, choose $x, y \in S_E, x \neq y$. We will show that the segment [x, y] is not contained in S_E .

If x and y are linearly dependent, necessarily y = -x and all non-trivial convex combinations of x and y are contained in the open unit ball, hence $[x, y] \not\subseteq S_E$.

Not let x and y be linearly independent. By the Cauchy-Bunyakovsky-Schwarz inequality, we have

$$\langle x, y \rangle \le |\langle x, y \rangle| < ||x|| ||y|| = 1.$$

$$\tag{1}$$

Fix $t \in (0,1)$ and let $z \coloneqq tx + (1-t)y$. We will show that $z \notin S_E$. Indeed,

$$\begin{aligned} \|z\|^2 &= \langle z, z \rangle = t^2 \, \|x\|^2 + t(1-t) \, \langle x, y \rangle + (1-t)t \, \langle y, x \rangle + (1-t)^2 \, \|y\|^2 = \\ &= t^2 + (1-t)^2 + 2t(1-t) \, \langle x, y \rangle < \\ &\stackrel{(1)}{<} t^2 + (1-t)^2 + 2t(1-t) = \\ &= t^2 + 1 - 2t + t^2 + 2t - t^2 = 1. \end{aligned}$$

Thus $||z||^2 < 1$ and ||z|| < 1 and $z \notin S_E$.

In both cases, no interior point of the segment [x, y] is contained in S_E , hence the norm in E is rotund.

Since we identify E with its dual, the norm in E^* is also rotund and by a), the norm in E is also smooth.

2) Consider the space c_0 of all real sequences that converge to zero equipped with the uniform norm

$$\|x\|_{c_0} \coloneqq \sup_i |x_i|.$$

Note that the dual space of c_0 is (isometrically isomorphic to) the space l^1 of absolutely summable sequences with norm

$$\|x\|_{l^1} \coloneqq \sum_i |x_i| \, .$$

Let $\{e_n\}_{n=1}^{\infty}$ be the canonical basis of c_0 , i.e. the coordinates $e_n^{(i)}$ of e_n are given by the Dirac delta function, $e_n^{(i)} \coloneqq \delta_{i,n}$.

For every natural $n \ge 1$, define x_n to be the same as e_n except that the first coordinate of x_n is always 1.

The corresponding norms of e_n are all equal to 1 and the norms of x_n are

$$||x_n||_{c_0} = 1 \qquad ||x_n||_{l^1} = 2.$$

For every n we have

$$\langle e_1, x_n \rangle = \langle e_n, x_n \rangle = 1,$$

hence $J_{c_0}(x_n)$ has at least two elements e_1 and e_n and the norm in c_0 is not smooth.

Given that $\{x_1, x_2, \ldots\} \subseteq S_{c_0}$, consider the convex combinations of x_2 and x_3 :

$$tx_2 + (1-t)x_3 = (1, t, (1-t), 0, 0, \ldots).$$

Evidently $tx_2 + (1-t)x_3 \in S_{c_0}$ for every $t \in (0,1)$, hence the norm in c_0 is not rotund.

The contrapositions to the statements in a) say that if E is not rotund (resp. smooth), then the dual space E^* is not smooth (resp. rotund). Thus l^1 is neither smooth or rotund as the dual of c_0 .

4. We will prove that E is rotund if and only if

$$||x + y|| = ||x|| + ||y|| \implies x \text{ and } y \text{ are linearly dependent.}$$
 (2)

(\implies) Let E be rotund let $x, y \in E$ be distinct vectors such that

$$|x + y|| = ||x|| + ||y||.$$
(3)

If either of them is the zero vector, then they are trivially linearly dependent. Assume that both x and y are nonzero and define

$$\xi \coloneqq \frac{x}{\|x\|} \qquad \qquad \eta \coloneqq \frac{y}{\|y\|} \qquad \qquad t \coloneqq \frac{\|x\|}{\|x+y\|}$$

Equation (3) implies that

$$1 - t = 1 - \frac{\|x\|}{\|x + y\|} = \frac{\|x + y\| - \|x\|}{\|x + y\|} = \frac{\|y\|}{\|x + y\|}.$$

Since both ξ and η are in S_E , by rotundity, their convex combination

$$\nu \coloneqq t\xi + (1-t)\eta$$

should not be contained in S_E unless $\xi = \eta$. Calculating the norm, we obtain

$$\begin{aligned} \|\nu\| &= \|t\xi + (1-t)\eta\| = \\ &= \left\|\frac{\|x\|\,\xi}{\|x+y\|} + \frac{\|y\|\,\eta}{\|x+y\|}\right\| = \\ &= \left\|\frac{x+y}{\|x+y\|}\right\| = 1, \end{aligned}$$

hence $\nu \in S_E$. Thus $\xi = \eta$ and $x = \frac{\|x\|}{\|y\|} y$, so x and y are linearly dependent.

(\Leftarrow) Let eq. (2) hold and fix $x, y \in S_E, t \in (0, 1)$. Define $z \coloneqq tx + (1 - t)y$. First, assume that the vectors tx and (1 - t)y satisfy the left part of eq. (2), i.e.

$$||z|| = ||tx + (1-t)y|| = t ||x|| + (1-t) ||y|| = 1.$$

This does not refute rotundity since x and y are not necessarily distinct. It follows from eq. (2) that tx and (1-t)y are linearly dependent, hence x and y are also linearly dependent. Since x and y both have unit norm, either y = x or y = -x.

If we assume that y = -x, then

$$||z|| = ||tx + (1-t)y|| = (2t-1) ||x|| = 2t-1$$

which is only possible if t = 1 since ||z|| = 1. But t is strictly less than 1.

Hence $y \neq -x$ and the only remaining possibility is that y = x.

Now assume that the vectors tx and (1-t)y do not satisfy the left part of eq. (2). This implies ||z|| < 1. Thus x and y are necessarily distinct, but z is not contained in the unit sphere and the segment [x, y] is not contained in S_E .

We have shown that $x, y \in S_E$ implies that either y = x or that the segment [x, y] is not contained in S_E , thus the norm in E is rotund.

References

[Phe93] Robert Phelps. <u>Convex functions, monotone operators, and differentiability</u>. Springer-Verlag, 1993. ISBN: 0387567151.